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ABSTRACT
In this paper, we propose and compare two different
approaches for quantification of skin hemoglobin and
melanin on multi-spectral images. The first method is
based on non-negative matrix factorization (NMF) with
multiplicative update algorithm. The second method
is a Beer-Lambert law based model-fitting technique.
Quantitative evaluation through graph-cut segmentation
on melanoma indicates that model-fitting method obtains
more accurate quantification than NMF.
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1 Introduction

An accurate quantification of skin pigmentation is of pri-
mary importance for the objective diagnosis and grading
of skin diseases. In this paper, we propose to use multi-
spectral images to quantify skin hemoglobin and melanin.
The interest of working with multi-spectral images is to
have more accurate information on skin properties than
those obtained on conventional cameras. Several meth-
ods based on spectrum in visible wavelength range have
already been presented in the literature[1][2]. The main
idea of these methods is to select specific spectral bands in
the data to extract information on skin pigmentation.

In this paper, we propose to extract hemoglobin
and melanin components considering the whole spectrum.
Multi-spectral images acquired in visible wavelength re-
gion (e.g. 400-700 nm) are input into a mathematical opti-
cal skin model that considers the contributions from differ-
ent chromophores in the epidermis and dermis skin layers.
Through two different algorithms, non-negative factoriza-
tion and least-squares based model fitting, we can quantify
the concentrations of hemoglobin and melanin in a given
area of skin lesion and surrounding heathy skin. To evalu-
ate quantitatively, we apply graph-cut segmentation to both
inputs and outputs of the proposed algorithms. Experimen-
tal results indicate that model-fitting approach obtains more
accurate quantitative estimation than NMF.

2 Materials and Methods

2.1 Multi-spectral Image Acquistion

The multi-spectral imaging system (SpectraCamTM, New-
tone Technologies, Lyon, France) used in this work con-
tains a liquid crystal tunable filter (LCTF) (VariSpecTM,
Model VIS2, Cambridge Research & Instrumentation, Inc.,
Boston, MA) fitted in front of a PCO SensiCam Model 370
KL camera with 1168× 1036 pixels on a progressive scan
CCD image sensor (PCO Computer Optics, 93309 Kel-
heim, Germany) and a linear polarizing filter. The LCTF
has a nominal bandwidth of 30 nm and a nominal accuracy
of the selected peak wavelength of 4 nm. This allows to se-
lect about 80 significantly different tuning positions in the
range from 400 nm to 720 nm. A linearly polarized light
source was used with its polarization plane positioned ver-
tical to the polarization plane of the camera polarizer. Thus,
artifacts due to specular reflection were eliminated.

The multi-spectral images were acquired over the
whole melanoma area and the surrounding healthy skin in
the wavelength range 400-700 nm with the scanning step
10 nm. Inhomogeneities of illumination were removed by
normalizing the acquired multi-spectral images with corre-
sponding ones of white reflectance standard.

2.2 Model of Skin Optics

Fig.1 shows the schematic model of imaging process of
three layered model of skin. Two predominant chro-
mophores found in epidermal and dermal layers are
melanin and hemoglobin[3]. Based on Beer-Lambert law,
the absorbance of this skin model at a wavelength λ(A(λ))
can be expressed as

A(λ) = log(1/R(λ))

= εHb(λ)lHb(λ)cHb + εMel(λ)lMel(λ)cMel (1)

where R is the reflectance of the skin, l is the light pen-
etration depth, c denotes the concentration of the chro-
mophore and ε is the extinction coefficient that depends
on absorbance spectrum of the chromophore (as shown in
Fig.2 plotted in logarithmic scale).
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Figure 1. Three-layered skin model.

The extinction coefficient of hemoglobin has local
maxima between 542 nm and 577 nm, which provides
a convenient wavelength region for the quantification of
hemoglobin. The extinction coefficient of melanin has no
characteristic maximum in the visible region but demon-
strates a monotonic decrease towards larger wavelengths.
Particularly, in red region of the spectrum (> 600 nm), the
molar absorptivity of melanin is more prominent compared
with the other chromophore. Hence, the red region can be
used for melanin quantification.
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Figure 2. Molar absorptivity spectra of chromophores.

2.3 Erythema Index and Melanin Index

Erythema index (EI) and melanin index (MI) hold excel-
lent linearity with hemoglobin concentration and melanin
concentration respectively. Unlike color coordinates such
as L∗a∗b∗, the EI and MI are not indicators for evaluating
’color’ but represent an index for quantifying the amounts
of hemoglobin and melanin. Based on the theories of ab-
sorbance of skin model (Section 2.2), Takiwaki et al.[2]
proposed a simple method to derive EI and MI images from
multi-spectral images. The equations for calculating EI and
MI are written as follows:

EI = log10(1/Rλ1
)− log10(1/Rλ2

) (2)
MI = log10(1/Rλ2

) (3)

where Rλ = Sλ/Wλ. Rλ is the normalized reflectance
image of the sample under study, Sλ is the acquired image

of the sample and Wλ is the white standard. λ1 is set at a
wavelength range of 540-570nm, and λ2 is at 620-650nm.
In fact, this method is a simplified application of algorithm
proposed by Stamatas[1] within visible spectrum range.

2.4 Non-negative Matrix Factorization Based Ap-
proach

Non-negative matrix factorization (NMF) suggested by Lee
and Seung[4] is a useful method of decomposition of mul-
tivariate data. The method explicitly enforces the non-
negativity constraint on the values of the source data as
well as the mixing quantities of the source data forming the
mixed data. Compared to other source separation method
like ICA, NMF has two main advantages in application to
our problem. First, non-negativity constraint on the source
data prevents meaningless negative value of chromophore
concentration. Second, no constrain on the orthogonality
of the source data allows dependency between skin chro-
mophores, which is closer to the reality. The problem of
source separation can be formulated as a linear mixture sep-
aration problem as in (4).

X = AS (4)

where X is the observation data matrix of m rows and n
columns, with each row representing the absorbance image
vector at each wavelength. S is a source data matrix of l
rows and n columns, with l being the number of sources to
be extracted. The matrix A is known as the mixing matrix
with m rows and l columns. The columns of which repre-
sent the mixing values of each source component. Accord-
ing to the absorbance of the multi-layered model described
in Section 2.2. Equation (1) can be modified in form of
Equation (4):[

log(1/r(λ1))

...
log(1/r(λm))

]
m×n

=

[
εh(λ1) εm(λ1)

...
...

εh(λm) εm(λm)

]
m×2

[ ch
cm

]
2×n

(5)

where r(λi) is the normalized reflectance image at
wavelength λi. εh,m(λi) are extinction coefficients of
hemoglobin and melanin at wavelength λi, respectively.
ch,m denote concentration distribution maps of hemoglobin
and melanin. The non-negativity constraint is enforced on
the source data and the mixing matrix as S ≥ 0 and A ≥ 0
respectively. Therefore, the problem can be formulated as
a maximum-likelihood problem with least squares solution
as in (6).

AML,SML = argmax
A,S

p(X|A,S) (6)

⇒ F = argmin
A,S

‖X −AS‖2 (7)

Subject to : A ≥ 0,S ≥ 0

In the maximum likelihood optimization, the negative log-
likelihood of F is minimized i.e. log ‖X −AS‖ is com-
puted at each iteration. Here, ‖ · ‖ is the Euclidean norm.



The updates of A and S can be performed under the ’mul-
tiplicative update rule’ in forms as (8).

A← A
XS>

ASS>
, S ← S

A>X

A>AS
(8)

This rule ensures the non-negative properties of the optimal
solutions, AML and SML if the initial matrices Ainitial and
Sinitial are strictly positive. The initialization of the source
data matrix S is given by EI and MI and the mixing matrix
A can be initialized using least squares estimation with a
single constraint as given in (10).

Sinitial =
[
EI
MI

]
(9)

argmin
Ainitial

‖X −AinitialSinitial‖2 (10)

Subject to : Ainitial ≥ 0

The dimension m is 26 in our experiment since we use
multi-spectral images over 26 wavelengths sampled be-
tween 450-700nm.

2.5 Model-Fitting Based Approach

Source separation based approaches, like ICA and NMF,
give us a statistical tool to quantify skin hemoglobin and
melanin in case that the mixing matrix A is unknown.

In this section, we employ a more accurate model
which includes oxy-hemoglobin and deoxy-hemoglobin
based on the oxygen-saturation of hemoglobin. So that
Equation (4) can be rewritten as[

log(1/r(λ1))

...
log(1/r(λm))

]
=

[
εhO2(λ1) εh(λ1) εm(λ1)

...
...

...
εhO2(λm) εh(λm) εm(λm)

] [ chO2
ch
cm

]
(11)

where the mixing matrix A is approximated using
tabulated extinction coefficients of three predominant
chromophores[5][6], εhO2(λi), εh(λi) and εm(λi) at wave-
length λi. Now the problem is simply to fit this model
by solving a system of linear equations. Solutions of this
overdetermined system can be obtained using least-squares
estimation with a single constraint as given in (12).

argmin
Atabulated

‖X −AtabulatedS‖2 (12)

Subject to : S ≥ 0

3 Results and Discussion

In this section, we compare the proposed algorithms using
acquired multi-spectral images of melanoma at 26 wave-
length sampled equally from 450 nm to 700 nm. Based on
the dermatologic knowledge that (i) vasculature contains
higher concentration of hemoglobin and lower concentra-
tion of melanin, (ii) increase of melanin content and de-
crease of hemoglobin content are responsible for the dark
color of melanoma, one can see that model-fitting method

outperforms NMF based method in extracting relatively
accurate concentration cartographies of hemoglobin and
melanin. For example, NMF based method overestimates
the hemoglobin concentration within the central melanoma
area (Fig.3(b)) and underestimates the melanin concentra-
tion on the near-border melanoma area (Fig.3(c)).

(a) Reconstructed Color Image
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(b) Hemoglobin by NMF
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(c) Melanin by NMF
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(d) Hemoglobin by MF
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(e) Melanin by MF

Figure 3. Comparison of hemoglobin and melanin concen-
tration cartographies on ’Melanoma’. ’MF’: model-fitting
method.

In context of melanoma detection, a precise and ro-
bust segmentation of skin pigmented lesion is required to
discriminate tumor cell boundary and the surrounding tis-
sue. Thus, the accuracy of the different quantification
methods can be evaluated by the accuracy of the segmenta-
tion of melanoma, measured by Dice similarity coefficient
(DSC), false negative ratio (FNR) and false positive ratio
(FPR). We use extracted melanin images (Fig. 3(c),(e))
as well as the 26 acquired multi-spectral images to per-
form the graph-cut segmentation. The manual input seed
map (Fig.4(a)) and the manual segmented ground truth
(Fig.4(b)) are both obtained from dermatologists. First,
we compare a classic graph-cut segmentation on recon-
structed color image (Fig.3(a)) with a modified approach
on and 26-level images (26 multi-spectral images). It will



be demonstrated below that using multi-spectral images,
performance of segmentation can be enhanced consider-
ably. Second, we compare the segmentation results on 4-
level images (reconstructed color image + melanin image)
with 27-level images (multi-spectral images + melanin im-
age). In Table 2, we can observe that how model-fitting
method achieves better results compared with NMF based
method. The DSC is increased to 0.965 while both FNR
and FPR decrease.

(a) Seed Map (b) Ground Truth

(c) Classic GC (d) ’4-level’ GC with NMF

(e) ’4-level’ GC with MF (e) ’26-level’ GC

(f) ’27-level’ GC with NMF (g) ’27-level’ GC with MF

Figure 4. Comparison of segmentation results on
’melanoma’. ’GC’: graph-cut.

Table 1. Comparison of Segmentation Accuracy (Part 1)

4-level MF 4-level NMF Classic GC
DSC 0.954 0.950 0.943
FNR 0.009 0.011 0.026
FPR 0.085 0.092 0.091

Table 2. Comparison of Segmentation Accuracy (Part 2)

27-level MF 27-level NMF 26-level GC
DSC 0.965 0.963 0.962
FNR 0.008 0.008 0.008
FPR 0.065 0.067 0.068

4 Conclusions

In this paper, we propose and compare two different quanti-
tative estimation approaches on multi-spectral skin images
using NMF and model fitting. By means of two compar-
ative experiments based on dermatologic knowledge and
graph-cut segmentation, we show that model-fitting ap-
proach obtains more accurate quantitative estimation of
skin hemoglobin and melanin. In future work, scattering
and penetration depth will be taken into account in skin op-
tics model.
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