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ABSTRACT

In this paper, we propose and compare four different ap-

proaches for quantification of hemoglobin and melanin

in skin color images. The first method is to extract ery-

thema/melanin indices based on skin absorbance theories.

The second method is based on independent component

analysis (ICA) assuming that hemoglobin and melanin ab-

sorbance spectra are independent. The third method is based

on non-negative matrix factorization (NMF) with multiplica-

tive update algorithm. The fourth method is a Beer-Lambert

law based model-fitting technique. Quantitative evaluation

through graph-cut segmentation on melanoma indicates that

model-fitting method outperforms the other three methods.

Index Terms— skin pigmentation, hemoglobin, melanin,

ICA, NMF, model-fitting, graph cuts

1. INTRODUCTION

In dermatologic practice and clinical research visual cues are

of primary importance for the accurate diagnosis and grad-

ing of skin lesions. However, visual inspection is subjec-

tive, at best semi-quantitative, and non-linear. In spite of the

ability of human eyes to differentiate between colors (espe-

cially when contrasting colors are observed), we are unable to

precisely quantify our color perception without instrumental

means. Therefore, there is a need for objective, non-invasive

quantification of skin pigmentation. The existing image ac-

quisition based methods include: (a) regular color image ac-

quisition (film or digital images) that are comprised of three

broad band filtered images (red, green, and blue) approximat-

ing the light sensitivity of the cones in the human eye and (b)

spectral imaging, i.e. the acquisition of a multitude of images

filtered at narrow wavelength bands.

The focus of our work in this paper is to estimate hemoglobin

and melanin quantitatively based on regular color imaging of

skin. We propose and compare four different approaches us-

ing erythema/melanin indices, source separation algorithms

(ICA and NMF) and model-fitting. Both qualitative and

quantitative evaluations indicate that model-fitting approach

outperforms the other three approaches.

2. MATERIALS AND METHODS

2.1. Model of Skin Optics

Fig.1 shows the schematic model of imaging process of three

layered model of skin. Two predominant chromophores

found in epidermal and dermal layers are melanin and

hemoglobin[1]. Based on Beer-Lambert law, the absorbance

of this skin model at a wavelength λ can be expressed as

A(λ) = log(1/R(λ))

= εHb(λ)lHb(λ)cHb + εMel(λ)lMel(λ)cMel (1)

where l is the light penetration depth, c denotes the concen-

tration of the chromophore and ε is the extinction coefficient

that depends on absorbance spectrum of the chromophore (as

shown in Fig.2 plotted in logarithmic scale).

0.007cm

0.113cm

0.500cm

Melanin

Oxy-hemoglobin
Deoxy-
hemoglobin

Epidermis

Dermis

Air

Hypodermis

i

surface
reflection

body
reflection

Light Source Digital CameraPolarizers

Fig. 1: Three-layered skin model.

The extinction coefficient of hemoglobin has local max-

ima between 542 nm and 577 nm, which provides a conve-

nient wavelength region for the quantification of hemoglobin.

The extinction coefficient of melanin has no characteristic

maximum in the visible region but demonstrates a monotonic

decrease towards larger wavelengths. Particularly, in red re-

gion of the spectrum (> 600 nm), the molar absorptivity of

melanin is more prominent compared with the other chro-

mophore. Hence, the red region can be used for melanin

quantification.

2.2. Erythema Index and Melanin Index

Erythema index (EI) and melanin index (MI) hold excel-

lent linearity with hemoglobin concentration and melanin
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Fig. 2: Molar absorptivity spectra of chromophores.

concentration respectively. Unlike color coordinates such as

L∗a∗b∗, the EI and MI are not indicators for evaluating ’color’

but indices for quantifying the amounts of hemoglobin and

melanin. Based on the theories of absorbance of skin model

(Section 2.1), Takiwaki et al.[2] proposed a simple method to

derive EI and MI images from RGB images. The equations

for calculating EI and MI are written as follows:

EI = log10(1/Rgreen)− log10(1/Rred) (2)

MI = log10(1/Rred) (3)

where Rred, green = Sred, green/Wred, green. Rred, green are the

normalized red and green reflectance images of the sample

under study, Sred, green are the acquired red and green color

images of the sample and Wred, green are the average red and

green values supposed to be nearly equivalent in the white

standard. In fact, this method is a simplified application of

algorithm proposed by Stamatas[3] within visible spectrum

range.

2.3. Independent Component Analysis Based Approach

Hyvärinen et al.[4] proposed several techniques for Indepen-

dent Component Analysis (ICA) for decomposing multivari-

ate data into independent components using a function of non-

Gaussianity. One of the most important contribution of their

related works is the FastICA algorithm. We have applied the

FastICA for our problem of skin color decomposition to quan-

tify hemoglobin and melanin.

The general approach of ICA can be formulated as fol-

lowing: assume that we have a sequence of observed data

x1,x2, · · · ,xn which can be arranged in the rows of the ma-

trix X . If each data xk is the linear combination of the source

data (independent components) sk then the observation ma-

trix X can be represented as a product of two matrices

X = AS (4)

where A is a mixing matrix and S is a matrix of source data.

The task of ICA is to determine the mixing matrix A and the

matrix of independent source data S given the observation

matrix X .

In our particular case, the application of ICA is based on

independency of hemoglobin and melanin, as well as the ab-

sorbance of the multi-layered model described in Section 2.1.

Here, Equation (1) can be modified in form of Equation (4):

[
log(1/r(λr))
log(1/r(λg))
log(1/r(λb))

]
=

[
εh(λr) εm(λr)
εh(λg) εm(λg)
εh(λb) εm(λb)

] [ ch

cm

]
(5)

where r(λr,g,b) are the normalized reflectance images of red,

green and blue channel, respectively. εh,m(λr,g,b) are extinc-

tion coefficients of hemoglobin and melanin at ’red band’,

’green band’ and ’blue band’, respectively. ch,m denote con-

centration distribution maps of hemoglobin and melanin. In

Equation (5), we notice that the number of reflectance im-

ages (three) in observation matrix is greater than the expected

number of independent components (two). Therefore, princi-

ple component analysis (PCA) is applied to reduce the dimen-

sionality of the observation matrix and prewhiten the data so

that the task of finding the mixing matrix reduces to the task

of estimating a square orthogonal matrix.

The observation data is linearly transformed by PCA such

that

X̃ = MX = MAS = ÃS (6)

where M is the whitening matrix calculated by eigen-value

decomposition (EVD) of the covariance matrix E{XX�}
so that E{X̃X̃

�}=I; Ã=MA is a new orthogonal mixing

matrix that can be seen from

E{XX�} = ÃE{SS�}Ã�
= ÃÃ

�
= I (7)

The problem is now reduce to the estimation of the orthogonal

mixing matrix Ã. The columns of the matrix Ã are denoted

by ãi and the ith source component can be computed using x̃
by the following equation,

si = ãi
�X̃ = w�X̃ (8)

The Fast ICA algorithm for one unit as described in Equation

(8) is

w+ = E{X̃g(w�X̃)} − E{g′(w�X̃)}w (9)

wnew = w+/‖w+‖ (10)

The one-unit algorithm can be extended to the estimation

of the whole ICA transformtion S=W�X̃ using the Gram

Schmidt deflation approach. This step of decorrelation en-

sures that we do not obtain the same independent component.

2.4. Non-negative Matrix Factorization Based Approach

Non-negative matrix factorization (NMF) suggested by Lee

and Seung[5] is a useful method of decomposition of mul-

tivariate data. The method explicitly enforces the non-

negativity constraint on the values of the source data as well
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as the mixing quantities of the source data forming the mixed

data.

Compared to the FastICA algorithm, NMF has two

main advantages in application to our problem. First, non-

negativity constraint on the source data prevents meaningless

negative value of chromophore concentration. Second, no

constrain on the orthogonality of the source data allows de-

pendency between skin chromophores, which is closer to the

reality.

To extend NMF in our application, we simply employ the

same linear mixture model as described in Equation (4, 5).

The non-negativity constraint is enforced on the source data

and the mixing matrix as S ≥ 0 and A ≥ 0 respectively.

Therefore, the problem can be formulated as a maximum-

likelihood problem with least squares solution as in (11).

AML,SML = argmax
A,S

p(X|A,S) (11)

⇒ F = argmin
A,S

‖X −AS‖2 (12)

Subject to : A ≥ 0,S ≥ 0

In the maximum likelihood optimization, the negative log-

likelihood of F is minimized i.e. log ‖X−AS‖ is computed

at each iteration. Here, ‖ · ‖ is the Euclidean norm. The up-

dates of A and S can be performed under the ’multiplicative

update rule’ in forms as (13).

A ← A
XS�

ASS� , S ← S
A�X
A�AS

(13)

This rule ensures the non-negative properties of the optimal

solutions, AML and SML if the initial matrices Ainitial and

Sinitial are strictly positive. The initialization of the source

matrix S is given by EI and MI and the mixing matrix A
can be initialized using least squares estimation with a single

constraint as given in (15).

Sinitial =
[
EI
MI

]
(14)

argmin
Ainitial

‖X −AinitialSinitial‖2 (15)

Subject to : Ainitial ≥ 0

2.5. Model-Fitting Based Approach

Source separation based approaches, like ICA and NMF, give

us a statistical tool to quantify skin hemoglobin and melanin

if the mixing matrix A is unknown.

In this section, we employ a more accurate model which

includes oxy-hemoglobin and deoxy-hemoglobin based on

the oxygen-saturation of hemoglobin. So that Equation (4)

can be written as[
log(1/r(λr))
log(1/r(λg))
log(1/r(λb))

]
=

[
εHbO2(λr) εHb(λr) εMel(λr)
εHbO2(λg) εHb(λg) εMel(λg)
εHbO2(λb) εHb(λb) εMel(λb)

] [ cHbO2

cHb

cMel

]
(16)

where the mixing matrix A is approximated using tabulated

extinction coefficients of three predominant chromophores[6,

7], εHbO2(λ), εHb(λ) and εMel(λ). λr, λg and λb are selected

at 600nm, 540nm and 440nm. Now the problem is simply to

fit this model by solving a system of linear equations. Since

the number of equations is equal to the number of unknowns

in this linear system, we can obtain the solutions as

S = A−1
tabulateX (17)

3. RESULTS AND DISCUSSION

In this section, we compare our NMF based and model-fitting

methods to Takiwak’s and ICA based methods. Firstly, we

evaluate qualitatively the performances of these methods us-

ing a ’lip-pimple’ image (Fig.3(a)) and a ’melanocytic nevus’

image (Fig.4(a)). Based on the dermatologic knowledge that

(i) lip or pimple has higher concentration of hemoglobin

and lower concentration of melanin, (ii) increase of melanin

content and decrease of hemoglobin content are responsible

for the dark color of melanocytic nevus, one can see that

model-fitting method outperforms the other three approaches

in extracting relatively accurate concentration cartographies

of hemoglobin and melanin. ICA based method gives poor

quantitative estimations due to some unrealistic negative val-

ues of independent components. Takiwaki’s method and

NMF based approach give similar results though less ac-

curate compared with model-fitting method. For example,

Takiwaki’s method overestimates hemoglobin concentration

in nevus (Fig.4(b)) and NMF based method overestimates

melanin concentration in lip (Fig.3(g)).

In context of melanoma detection, a precise and robust

segmentation of skin pigmented lesion is required to discrim-

inate tumor cell boundary and the surrounding tissue. Thus,

the accuracy of the different quantification methods can be

evaluated by the accuracy of the segmentation of melanoma,

measured by Dice similarity coefficient (DSC), false negative

ratio (FNR) and false positive ratio (FPR). We use one rep-

resentative ’melanoma’ image (Fig.5(a)) from the total eval-

uated 30 melanoma lesions to present the evaluation task.

These ’melanoma’ images are 938×872 pixels. The ground

truth (Fig.5(b)) is obtained by manual segmentation of 5 der-

matologists. First, we compare a classic graph-cut segmen-

tation on RGB image with a modified approach on five-level

images: RGB and Hemoglobin/Melanin images. It will be

demonstrated below that by adding Hemoglobin/Melanin im-

ages to RGB image, graph-cut segmentation gives better re-

sult. Second, we compare the modified graph-cut segmenta-

tions obtained by different quantification methods. In Table

1, we can observe how model-fitting method achieves better

results. The DSC is increased to 0.982 while both FNR and

FPR decrease. NMF based method and Takiwaki’s method

give similar results, which is exactly the same as for the qual-

itative evaluation.
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Fig. 3: Comparison of hemoglobin and melanin concentra-

tion cartographies on ’lip-pimple’. ’H’: hemoglobin. ’M’:

melanin. ’MF’: model-fitting.

(a) Melanocytic Nevus
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Fig. 4: Comparison of hemoglobin and melanin concentration

cartographies on ’melanocytic nevus’.

4. CONCLUSIONS

In this paper, we propose and compare four different quan-

titative estimation approaches on skin color image using

erythema/melanin indices, source separation algorithms (ICA

and NMF) and model-fitting. By means of two comparative

experiments based on dermatologic knowledge and graph-cut

segmentation, model-fitting approach obtains more accurate

quantitative estimation of skin hemoglobin and melanin. In

future work, multi-spectral imaging based approaches will be

studied.
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