# Segmentation d'Images Couleurs et Multispectrales de la Peau

# Hao GONG

Supervisor: Pr. Michel DESVIGNES



### **Overview**

#### • Motivation:

Detection of Melanoma with Computer-Aided Diagnosis System;

#### Methodology:

Graph-cut Based Image Segmentation Framework with "Soft" Classification and Multiple Visual Features;

#### Applications:

Segmentation of Melanoma:

- Skin Chromophore Extraction
- Automatic PSLs Segmentation (APS) Framework
- Conclusion and Perspectives.

### What is melanoma and why early diagnosis vital ?

Melanoma is the deadliest type of skin cancer.



**Melanoma** *in situ* (malignant)



Invasive Melanoma (malignant)

✓ Prognostic Analysis: Clark Levels





### How to diagnose?

✓ Computer-Aided Diagnosis (CAD)



5

Ē



#### **Overview**

#### • Motivation:

Detection of **Melanoma** with **C**omputer-**A**ided **D**iagnosis **S**ystem;

#### Methodology:

Graph-cut Based Image Segmentation Framework with "Soft" Classification and Multiple Visual Features;

#### • Applications:

Segmentation of Melanoma:

- Skin Chromophore Extraction
- Automatic PSLs Segmentation (APS) Framework
- Conclusion and Perspectives.

## Graph cuts based segmentation



gipsa-lab

#### State-of-the-art methods by graph cuts

Boykov-Jolly's method:

$$D_{p}(l_{p}) = -\log \Pr(x_{p}|l_{p}) = -\log h(x_{p};l_{p}) \quad \text{Gray/Color Histogram Model}$$

$$V_{\{p,q\}}(l_{p},l_{q}) = \begin{cases} B_{p,q} & \text{if } l_{p} \neq l_{q} \\ 0, & \text{if } l_{p} = l_{q} \end{cases} \quad B_{p,q} \propto \exp\left(-\frac{(x_{p} - x_{q})^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{dist(p,q)} \quad \text{Penalty for Discontinuity}$$

 $\blacktriangleright \text{ Lazy Snapping:}$   $D_p(l_p) = \frac{d_p^{l_p}}{d_p^1 + d_p^0}$   $d_p^{\mathcal{O}} = \min_i ||\boldsymbol{x}_p - \boldsymbol{m}_i^{\mathcal{O}}||$   $d_p^{\mathcal{B}} = \min_j ||\boldsymbol{x}_p - \boldsymbol{m}_j^{\mathcal{B}}||$   $V_{\{p,q\}}(l_p, l_q) = \frac{|l_p - l_q|}{||\boldsymbol{x}_p - \boldsymbol{x}_q||^2 + 1}$ 

Kmeans Clustering: Distance from observed data to foreground/background cluster center

GrabCut:

**Gaussian Mixture Model (GMM)** 

$$D_p(l_p, k_p) = -\log \Pr(\boldsymbol{x}_p | l_p, k_p) = -\log \pi_p(l_p, k_p) \mathcal{N}(\boldsymbol{x}_p; \boldsymbol{\mu}(l_p, k_p), \boldsymbol{\Sigma}(l_p, k_p))$$

$$V_{\{p,q\}}(l_p, l_q) = \exp\left(-rac{||oldsymbol{x}_p - oldsymbol{x}_q||^2}{2\langle (oldsymbol{x}_p - oldsymbol{x}_q)^2 
angle}
ight) \cdot rac{1}{dist(p,q)} \cdot \delta_{l_p 
eq l_q}$$

### <sup>B</sup>Drawbacks of graph-cut segmentation and our solutions

- Tuning of parameters  $\lambda$  and  $\sigma$ ;
- Definition of data term is color, texture, shape features;



Initialization



Segmentation

Ground Truth

Selection of seeds Auto-Seeding for Melanoma.

## Graph cut: influence of parameter $\lambda$

#### Parameter λ (Balancing Coefficient)



## Graph cut: influence of parameter $\sigma$

- $\blacktriangleright$  Parameter  $\sigma$  in smoothness term of Boykov-Jolly approach
  - $\checkmark$  Experiments on error- $\sigma$  subject to different levels of Gaussian noise



$$\sigma = \sqrt{\left\langle (I_p - I_q)^2 \right\rangle}$$

#### Graph cut: soft constraint vs. hard constraint?













#### gipsa-lab



#### Data term

#### Schematic of our proposed multi-feature based graph-cut segmentation



### Data term: texture feature

✓ Local Binary Pattern (LBP)  $\checkmark$ 



#### **Original LBP**





**Original Image** 

LBP Image

LBP Histogram

With Gaussian Smoothing (GLBP)  $\checkmark$ 



**Original Image** 

LBP Image

LBP Histogram



#### gipsa-lab

### Data term: shape feature

✓ Neighborhood Template



## Qualitative evaluation on synthetic texture image





Color



#### GLBP





#### **GLBP+Template**







### Qualitative evaluation on natural color images

✓ Comparison of different combination of features on different images



**Color+Template** 



#### Color+GLBP+Template



### Quantitative evaluation on natural color images

#### ✓ Comparison of different combination of features measured by error rate

| Input image | Feature<br>Classifier | Color  | $\operatorname{Color} + \operatorname{LBP}$ | $\operatorname{Color} + \operatorname{GLBP}$ | Color+Temp | m Color + LBP + Temp | m Color + GLBP + Temp |  |
|-------------|-----------------------|--------|---------------------------------------------|----------------------------------------------|------------|----------------------|-----------------------|--|
| Leopard     | SVM                   | 50.99  | 46.07                                       | 42.75                                        | 12.86      | 12.31                | 11.84                 |  |
|             | RF                    | 13.32  | 14.40                                       | 14.15                                        | 16.17      | 13.40                | 15.60                 |  |
| Swimmer     | SVM                   | 27.24  | 17.76                                       | 26.98                                        | 15.40      | 14.62                | 13.10                 |  |
|             | RF                    | 14.17  | 14.23                                       | 13.99                                        | 20.29      | 20.94                | 16.58                 |  |
| Cross       | SVM                   | 127.78 | 107.92                                      | 109.20                                       | 70.59      | 6.53                 | 23.23                 |  |
|             | RF                    | 15.43  | 12.90                                       | 12.50                                        | 4.00       | 3.99                 | 4.04                  |  |
| Grave       | SVM                   | 84.92  | 84.91                                       | 27.54                                        | 33.94      | 8.40                 | 23.48                 |  |
|             | RF                    | 7.28   | 7.11                                        | 6.67                                         | 8.39       | 8.29                 | 7.61                  |  |
| Plane       | SVM                   | 14.60  | 14.65                                       | 14.53                                        | 5.44       | 10.19                | 10.21                 |  |
|             | RF                    | 18.97  | 11.32                                       | 22.48                                        | 18.73      | 18.48                | 6.78                  |  |
| Japanese    | SVM                   | 17.53  | 10.08                                       | 12.25                                        | 1.66       | 2.85                 | 2.82                  |  |
|             | RF                    | 2.89   | 2.87                                        | 2.13                                         | 1.94       | 1.63                 | 1.52                  |  |
| Sheep       | SVM                   | 62.92  | 66.40                                       | 57.63                                        | 25.88      | 27.87                | 20.66                 |  |
|             | RF                    | 55.92  | 48.65                                       | 44.64                                        | 47.23      | 45.36                | 29.56                 |  |
| Boat        | SVM                   | 36.86  | 36.84                                       | 36.84                                        | 144.98     | 15.11                | 9.64                  |  |
|             | RF                    | 10.65  | 10.76                                       | 10.84                                        | 12.40      | 12.37                | 12.40                 |  |

Blue color highlights the best performance by either SVM or RF

### Qualitative evaluation on natural color images

#### ✓ Comparison of our approach against state-of-the-art methods





#### Quantitative evaluation on natural color images

✓ Comparison of our approach against state-of-the-art methods

| Error $\epsilon$ (%) Method<br>Input image | Boykov-Jolly | Lazy Snapping | GrabCut | Our approach |  |
|--------------------------------------------|--------------|---------------|---------|--------------|--|
| Texture                                    | 27.46        | 11.65         | 19.46   | 3.81         |  |
| Leopard                                    | 37.22        | 55.95         | 47.16   | 11.84        |  |
| Grave                                      | 20.63        | 10.89         | 5.15    | 7.61         |  |
| Cross                                      | 75.81        | 18.43         | 57.82   | 3.99         |  |
| Swimmer                                    | 16.25        | 8.02          | 165.20  | 13.10        |  |
| Plane                                      | 15.59        | 19.00         | 38.10   | 6.78         |  |
| Japanese                                   | 6.33         | 5.29          | 3.58    | 1.52         |  |
| Sheep                                      | 55.23        | 70.97         | 51.43   | 20.66        |  |
| Birds                                      | 19.05        | 18.64         | 25.50   | 10.82        |  |
| Boat                                       | 18.60        | 17.17         | 10.58   | 9.64         |  |

### **Overview**

• Motivation:

Detection of Melanoma with Computer-Aided Diagnosis System;

#### • Methodology:

Graph-cut Based Image Segmentation Framework with "Soft" Classification and Multiple Visual Features;

#### • Applications:

Segmentation of Melanoma:

- Skin Chromophore Extraction
- Automatic PSLs Segmentation (APS) Framework
- Conclusion and Perspectives.

### Schematic of segmentation of melanoma



#### gipsa-lab

### Skin images





Multi-spectral images of melanoma (469x436 pixels) at 26 wavelength sampled equally from 450 nm to 700 nm.

- Pre-Processing: Calibration
- ✓ Removal of Inhomogeneities of illumination
- ✓ Validate the reproducibility of spectral reflectance of skin.

$$oldsymbol{R}(\lambda) = rac{oldsymbol{S}(\lambda) - oldsymbol{D}}{oldsymbol{S}_{ ext{ref}}(\lambda) - oldsymbol{D}}$$

• RGB color image



### **Skin Structure & Optical Property**

### Schematic of optical pathway in a 3-layered skin model



Based on *Beer-Lambert Law*, absorbance of skin model can be expressed for each pixel of skin image as:

 $A(\lambda) = \log(1/R(\lambda))$ 

 $=\epsilon_{\rm HbO2}(\lambda)l_{\rm HbO2}(\lambda)c_{\rm HbO2} + \epsilon_{\rm Hb}(\lambda)l_{\rm Hb}(\lambda)c_{\rm Hb} + \epsilon_{\rm Mel}(\lambda)l_{\rm Mel}(\lambda)c_{\rm Mel}$ 

### Chromophore extraction: Image-processing based approaches

#### **RGB color space based (Tsumura's method):**



24

gipsa-lab

#### Chromophore extraction: Image-processing based approaches

#### ✓ Weakness of Tsumura's method

- Unrobust to variation of illumination;
- Lies in 3D surface where PCA inadequate;
- Valid only for small region of skin sample;



#### ✓ Proposed Surface Fitting and Flattening (SF<sup>2</sup>) Method



(c) Flattened 2-dimensional plane

#### gipsa-lab

## Results: on small region of facial skin

✓ Skin chromophore extraction results of small-region facial skin



# Chromophore extraction: Physical-model based approaches on RGB and Multispectral images



- Mixing matrix **A** is unknown:
  - ✓ Blind Source Separation (BSS) based methods (e.g. NMF)
- Mixing matrix A is given by tabulated extinction coefficient of three chromophores:
  - ✓ Proposed Model-Fitting approach:



 $rgmin_{oldsymbol{A}_{ ext{tabulated}}} \|oldsymbol{X}-oldsymbol{A}_{ ext{tabulated}}oldsymbol{S}\|^2$ Subject to :  $S \geq 0$ **Multispectral Image** 

### Qualitative evaluation on color facial images

- Based on the dermatologic knowledges:
- higher hemoglobin and lower melanin for lip and pimple



#### Quantitative evaluation on color melanoma image

✓ Graph-cut based segmentation using RGB color+melanin+hemoglobin



Melanoma



Manual Segmentation

| Method<br>Criterion | Model-Fitting | NMF   |
|---------------------|---------------|-------|
| DSC                 | 0.982         | 0.967 |
| FNR                 | 0.013         | 0.044 |
| FPR                 | 0.023         | 0.024 |



NMF



**Model-Fitting** 

#### gipsa-lab



#### Overview

• Motivation:

Detection of Melanoma with Computer-Aided Diagnosis System;

#### • Methodology:

Graph-cut Based Image Segmentation Framework with "Soft" Classification and Multiple Visual Features;

#### • Applications:

Segmentation of Melanoma:

- Skin Chromophore Extraction
- Automatic PSLs Segmentation (APS) Framework
- Conclusion and Perspectives.

#### Automatic PSLs segmentation on dermoscopic images

✓ Automatic PSLs Segmentation (APS) Framework





✓ Examples of Auto-Seeding results:

#### ambiguous border





gipsa-lab

32

#### Results of the Automatic PSLs segmentation on dermoscopic images

- ✓ Experiments on dermoscopic PSLs images
- > 100 dermoscopic PSLs images (768X512) from a dermoscopy atlas
- > 30 for training the parameter  $\lambda$ , 70 for testing
- 3 metrics for quantitative evaluation;

### Automatic PSLs segmentation on dermoscopic images

 Comparison of the proposed approach against classic graphcut based methods:



Melanoma



**Manual Segmentation** 



Color+Chromophore



Color



Color+GLBP

Lazy Snapping

Boykov-Jolly

GrabCut



#### Automatic PSLs segmentation on dermoscopic images

 Quantitative evaluation of our proposed APS framework with different combination of features against other classic graph-cut based segmentation

|                                           | Criterion | DSC   |      | Error $\epsilon$ |       | Precision |       | Recall |      |
|-------------------------------------------|-----------|-------|------|------------------|-------|-----------|-------|--------|------|
| Approach                                  |           | Mean  | SD   | Mean             | SD    | Mean      | SD    | Mean   | SD   |
| Color                                     |           | 91.19 | 4.24 | 16.05            | 6.59  | 98.98     | 1.99  | 84.91  | 7.59 |
| $\operatorname{Color}+\operatorname{LBP}$ |           | 91.41 | 3.89 | 15.70            | 6.47  | 98.74     | 2.02  | 85.69  | 7.68 |
| $\operatorname{Color+Chromo}$             |           | 93.85 | 3.08 | 12.26            | 5.95  | 98.36     | 1.68  | 88.27  | 7.56 |
| LS                                        |           | 88.73 | 4.68 | 20.15            | 7.61  | 98.76     | 1.53  | 80.89  | 7.67 |
| BKJ                                       |           | 88.70 | 5.00 | 20.13            | 7.90  | 99.07     | 0.81  | 80.66  | 8.14 |
| GrabCut                                   |           | 87.90 | 9.90 | 29.97            | 32.39 | 84.37     | 16.45 | 95.53  | 4.08 |

#### **Overview**

#### • Motivation:

Detection of **Melanoma** with computer-aided diagnosis system;

#### • Methodology:

Graph-cut based image segmentation framework with "soft" classification and visual features;

#### • Applications:

**Segmentation** of **Melanoma** and Automatic PSLs Segmentation (**APS**) framework;

- Skin chromophore extraction
- Auto-Seeding
- Conclusion and Perspectives.

#### Conclusion

#### ✓ Contributions:

- Combining Classification Techniques and Graph-Cut Based Segmentation Framework
  - Definition of likelihood energy term (data term) by posterior classification of a classifier
  - Soft constraints
  - Construction of powerful feature vector
- Application to Skin Chromophore Extraction
  - Image based approach: Surface Fitting and Flattening (SF<sup>2</sup>) approach
  - Physical property based approach: Model-Fitting Approach
- Application to Melanoma Detection
  - Robust and accurate segmentation tool: Automatic PSLs Segmentation (APS) Framework
  - Automatic selection of seed region (Auto-Seeding)
  - Chromophore feature in feature configuration