Skin Hemoglobin and Melanin Quantification on Multi-spectral Images

Hao GONG and Michel DESVIGNES

Outline

- Motivation/Objective
- Project Melascan
- Multi-spectral image acquisition
- Optics of human skin
- Different quantification methods
- Experimental results and evaluation
- Conclusion and perspective

Motivation/Objective

An accurate quantification of skin pigmentation is of primary importance for the objective diagnosis and grading of skin diseases.

Project Melascan

ANR (French National Research Agency) funded project

Innovative solution to detect and characterize progress over time of a skin cancer, using a standardized methodology and equipment, for the use of specialized and general physicians.

gipsa-lab

Borders are

even

Project Melascan

What is *Melanoma*?

Melanoma is the most dangerous form of skin cancer. >

What does *Melanoma* look like?

>Asymmetry, irregular Borders, multiple Colors,

Diameter >1/4inch, **E**volving

Borders are

uneven

Smaller than

¼ Inch

Multiple Colors

Larger than ¼ Inch

Fig. 2. 'ABCDE' of Melanoma

Fig.1. Melanoma

Ordinary Mole

Changing in size, shape and color

Multi-spectral Image Acquisition

Why Multi-spectral Images?

The integration of a multi-spectral light will allow:

✓ Reveal to the physicians the properties of non-visible skin characteristics (e.g. hemoglobin, melanin, collagen, etc.)

 \checkmark Observation of the cutaneous in-depth layers.

Multi-spectral Image Acquisition

gipsa-lab

Optics of Human Skin

Fig.4. Schematic model of imaging process of three-layered model of skin

5

Optics of Human Skin

Based on *Beer-Lambert* law, absorbance $A(\lambda)$ of the 3-layer skin model at wavelength λ can be expressed as:

Erythema/Melanin Index

Takiwaki et al. proposed a method to derive erythema index (EI) image and melanin index (MI) image from multi-spectral images.

$$EI = \log_{10}(1/R_{\lambda_1}) - \log_{10}(1/R_{\lambda_2})$$
$$MI = \log_{10}(1/R_{\lambda_2})$$

Non-negative Matrix Factorization Based Approach

Lee and Seung proposed a method of decomposition of multivariate data which explicitly enforces the nonnegativity constraint on the values of the source data as well as the mixed data.

Non-negative Matrix Factorization Based Approach

The problem of source separation can be formulated as:

X = AS

In our particular case, the above equation can be specified as:

$$\begin{bmatrix} \log(1/\boldsymbol{r}(\lambda_{1})) \\ \vdots \\ \log(1/\boldsymbol{r}(\lambda_{m})) \end{bmatrix}_{m \times n} = \begin{bmatrix} \epsilon_{h}(\lambda_{1}) & \epsilon_{m}(\lambda_{1}) \\ \vdots & \vdots \\ \epsilon_{h}(\lambda_{m}) & \epsilon_{m}(\lambda_{m}) \end{bmatrix}_{m \times 2} \begin{bmatrix} \boldsymbol{C}_{h} \\ \boldsymbol{C}_{m} \end{bmatrix}_{2 \times n}$$

Non-negative Matrix Factorization Based Approach

Now the problem can be formulated as

a maximum-likelihood problem with least-squares solution:

$$\begin{aligned} \mathbf{A}_{ML}, \mathbf{S}_{ML} &= \arg \max p(\mathbf{X} | \mathbf{A}, \mathbf{S}) \\ \mathbf{A}, \mathbf{S} \\ \Rightarrow F &= \arg \min \| \mathbf{X} - \mathbf{A} \mathbf{S} \|^2 \\ \mathbf{A}, \mathbf{S} \\ Subject \ to : \mathbf{A} \ge 0, \mathbf{S} \ge 0 \end{aligned} \qquad \begin{aligned} \mathbf{S}_{\text{initial}} &= \begin{bmatrix} \mathbf{E} \mathbf{I} \\ \mathbf{M} \mathbf{I} \end{bmatrix} \\ & \arg \min \| \mathbf{X} - \mathbf{A}_{\text{initial}} \mathbf{S}_{\text{initial}} \|^2 \\ & \mathbf{A}_{\text{initial}} \\ Subject \ to : \mathbf{A} \ge 0, \mathbf{S} \ge 0 \end{aligned}$$

Model-Fitting Based Approach

A more accurate model introduced including oxyhemoglobin and deoxy-hemoglobin based on the oxygen-saturation of hemoglobin.

X = AS

$$\begin{bmatrix} \log(1/\boldsymbol{r}(\lambda_{1})) \\ \vdots \\ \log(1/\boldsymbol{r}(\lambda_{m})) \end{bmatrix} = \begin{bmatrix} \epsilon_{hO2}(\lambda_{1}) & \epsilon_{h}(\lambda_{1}) & \epsilon_{m}(\lambda_{1}) \\ \vdots & \vdots & \vdots \\ \epsilon_{hO2}(\lambda_{m}) & \epsilon_{h}(\lambda_{m}) & \epsilon_{m}(\lambda_{m}) \end{bmatrix} \begin{bmatrix} \boldsymbol{c}_{hO2} \\ \boldsymbol{c}_{h} \\ \boldsymbol{c}_{m} \end{bmatrix}$$

Model-Fitting Based Approach

Solutions of this over-determined system can be obtained using least-squares estimation with a single constraint:

$$\begin{aligned} & \arg\min \| \boldsymbol{X} - \boldsymbol{A}_{\text{tabulated}} \boldsymbol{S} \|^2 \\ & \boldsymbol{A}_{\text{tabulated}} \\ & \textit{Subject to} : \boldsymbol{S} \geq 0 \end{aligned}$$

Results & Qualitative Evaluation

0.5 0.4 0.3 0.2 0.1 0.1

0.9

(a) Reconstructed Color Image (b) Her

(c) Melanin by NMF

Fig.6. Comparison of hemoglobin and melanin concentration cartographies.

(d) Hemoglobin by MF

(e) Melanin by MF

Results & Quantitative Evaluation

(a) Seed Map

(b) Ground Truth

(e) '4-level' GC with MF

(e) '26-level' GC

(c) Classic GC

(d) '4-level' GC with NMF

(f) '27-level' GC with NMF

(g) '27-level' GC with MF

Fig.7. Comparison of graph-cut segmentation results

Results & Quantitative Evaluation

	4-level MF	4-level NMF	Classic GC
DSC	0.954	0.950	0.943
FNR	0.009	0.011	0.026
FPR	0.085	0.092	0.091

Table 1. Comparison of Segmentation Accuracy (Part 1)

 Table 2. Comparison of Segmentation Accuracy (Part 2)

	27-level MF	27-level NMF	26-level GC
DSC	0.965	0.963	0.962
FNR	0.008	0.008	0.008
FPR	0.065	0.067	0.068

Conclusion & Perspective

By means of two comparative experiments based on: ➤Dermatologic knowledge

➢Graph-cut (GC) segmentation
Model-fitting approach (MF) outperforms Non-negative
Matrix Factorization (NMF) based approach.

In future work, scattering and penetration depth will be taken into account in skin optics model.

THANK YOU! Any QUESTIONS?

